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LETTER TO THE EDITOR

Bose–Einstein condensation of excitons in a semiconductor
quantum well

Z G Koinov†
Department of Physics, Higher Institute of Transport Engineering, 1574 Sofia, Bulgaria

Received 27 January 1999

Abstract. We consider the problem of Bose–Einstein condensation of excitons in a single
quantum well with infinitely high potential barriers. A formal treatment similar to BCS theory
of superconductivity is used to calculate the chemical potential of excitons in the Bose-condensed
ground state as a function of quantum-well thickness in a low-density limit.

Over the past 30 years the problem of Bose–Einstein condensation of excitons has been the
subject of considerable experimental and theoretical interest. In view of the great advances
made in our ability to design and manufacture low-dimensional semiconductor structures, the
search for a low-dimensional condensed phase of excitons has greatly expanded in recent years.
Most of the works have studied the exciton condensed phase in low-dimensional structures in
which the electrons and holes are in two different infinitesimally thin layers separated by a
wide barrier material ( Zhuet al1995, Naveh and Laikhtman 1996, Littlewood and Zhu 1996,
Fernandez-Rossier and Tejedor 1997, Kim and Wolfe 1998). This type of structure is of special
interest because (i) the barrier increases the exciton lifetime and avoids formation of biexcitons,
(ii) from a theoretical point of view the electron and hole motions in the infinitesimally thin
layers can be regarded as pure two-dimensional (2D) motions without any quantization along
the direction perpendicular to the layers. Therefore the well-known mean-field theory of
Bose–Einstein condensation of excitons in 3D case can be applied in pure 2D case without any
problems. But, since electrons and holes are present in different layers, overlapping only at the
interfaces, where their wave functions vanish, a dramatic decrease in the exciton binding energy
occurs. For this reason the temperature at which the order parameter vanishes (i.e. the critical
temperature for condensation) must be very small, because the critical temperature is related to
the ionization of the Bose-condensed excitons with a small binding energy. Since in a quantum
well the exciton binding energy increases with a decrease in quantum well widths, approaching
four times the 3D effective Rydberg, the corresponding critical temperature, associated with
the ionization of the excitons, must be higher. From this point of view, a single quantum
well structure, in which the lifetime of excitons is long enough, should be more suitable for
the appearance of the exciton condensed phase than the above-mentioned separated-layers
structure.

In the present work, we address the problem of Bose–Einstein condensation of excitons in
a single semiconductor quantum well. We take into account the fact that the electron and hole
motions along thez direction (throughout this paper, we take thex-y plane to be the plane of
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confinement of the two-dimensional electron-hole system) are quantized into discrete levels
due to the presence of a confinement potential along this direction. We will use a formal Green
function treatment similar to the BCS theory of superconductivity. According this treatment
the presence of Bose-condensed excitons modifies the single-particle Green functions, and
therefore one has to consider the so-called ‘anomalous’ one-particle electron and hole Green
functions. Those ‘anomalous’ Green functions vanish above a certain critical temperature,
indicating that there is no longer a condensate of excitons in the system. In what follows we
are interested in the case of quantum wells made from direct-gap semiconductors with non-
degenerate and isotropic bands when the electron-hole pair is confined between two parallel,
infinitely high potential barriers. With the perfect confinement approximation the dispersion
laws for electronsEc(k, λ) and holesEv(k, ξ) are as follows (we set ¯h = 1):

Ec(k, λ) = Eg +
k2

2me
+
π2λ2

2mcL2
Ev(k, ξ) = − k2

2mv
− π2ξ2

2mvL2

wheremc andmv are the electron and hole effective masses,Eg is the energy gap,k is a 2D
wave vector and the quantum well has a thicknessL. λ, ξ = 1, 2, . . . denote the quantum
number of the states in the infinitely deep wells.

In what follows we assume that the excitons in a quantum well behave almost like weakly
interacting Bose particles, and therefore one might expect that the Bose–Einstein condensation
of excitons is possible. In this case the Fourier transforms of the inverse ‘normal’ and
‘anomalous’ one-particle Green functions are:

G−1
cc (k, λ, λ

′, iωm) = δλλ′ [iωm − (Ec(k, λ)− µc)] (1a)

G−1
vv (k, ξ, ξ

′, iωm) = δξξ ′ [iωm − (Ev(k, ξ)− µv)] (1b)

G−1
cv (k, λ, ξ, iωm) = −6cv(k, λ, ξ, iωm) (1c)

G−1
vc (k, ξ, λ, iωm) = −6vc(k, ξ, λ, iωm). (1d)

HereG−1
cc , G−1

vv andG−1
cv , G−1

vc are the inverse ‘normal’ and ‘anomalous’ Green functions,
respectively,µe and µv are the chemical potentials of the electrons and holes, and6ij
(i, j = c, v) denote the corresponding mass operators (the mass operators6cc and6vv have
been included in the effective masses in the corresponding dispersion relations). The symbol
ωm is denoted byωm = (2π/β)(m+1/2), β = (kBT )−1, kB is the Boltzman constant,T is the
temperature andm = 0,±1,±2, . . . . The mass operators in the Dyson equations (1c) and (1d)
can be written as a sum of a Hartree part and a screened Fock part. The Hartree term vanishes
because of the global neutrality of the electron-hole system. In what follows we will extract
from the mass operators only the screened static Fock terms6cv(k, λ, ξ) = 1cv(k, λ, ξ) and
6vc(k, ξ, λ) = 1vc(k, ξ, λ). In this approximation equations (1c) and (1d) assume the forms:

G−1
cv (k, λ, ξ, iωm) = −1cv(k, λ, ξ) (1e)

G−1
vc (k, ξ, λ, iωm) = −1vc(k, ξ, λ) (1f)

The ‘normal’ Gcc(k, λ, λ
′, iωm) ,Gvv(k, ξ, ξ

′, iωm) and ‘anomalous’Fcv(k, λ, ξ, iωm),
Fvc(k, ξ, λ, iωm) one-particle Green functions can be obtained by solving the following set of
equations:

δλλ′ =
∑
λ′′
Gcc(k, λ, λ

′′, iωm)G−1
cc (k, λ

′′, λ′, iωm)−
∑
ξ

Fcv(k, λ, ξ, iωm)1vc(k, ξ, λ
′) (2a)

0= −
∑
λ′
Gcc(k, λ, λ

′, iωm)1cv(k, λ
′, ξ) +

∑
ξ ′
Fcv(k, λ, ξ

′, iωm)G−1
vv (k, ξ

′, ξ, iωm) (2b)

0=
∑
λ

Fvc(k, ξ, λ, iωm)G
−1
cc (k, λ, ξ

′, iωm)−
∑
ξ ′
Gvv(k, ξ, ξ

′, iωm)1vc(k, ξ
′, λ) (2c)
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δξξ ′ = −
∑
λ

Fvc(k, ξ, λ, iωm)1cv(k, λ, ξ
′) +

∑
ξ ′′
Gvv(k, ξ, ξ

′′, iωm)G−1
vv (k, ξ

′′, ξ ′, iωm).

(2d)

The ‘normal’ phase of the system under consideration can be described by setting the non-
diagonal parts of mass operator1cv and1vc equal to zero. Thus,1cv and1vc are the order
parameters for the condensed phase. Using the static Fock terms, one can write the order
parameters in the following forms:

1cv(k, λ, ξ) = −
∑
q

∑
λ′,ξ ′

∑
ωm

2πe2

ε∞ |q − k|fλξ
′ξλ′ (L |q − k|) Fcv(q, λ′, ξ ′, iωm) (3a)

1vc(k, ξ, λ) = −
∑
q

∑
λ′,ξ ′

∑
ωm

2πe2

ε∞ |q − k|fλξ
′ξλ′ (L |q − k|) Fvc(q, , ξ ′, λ′, iωm). (3b)

Here the symbol
∑

ωm
denotesβ−1∑

m=0,±1,... . . .. The functionfλξ ′ξλ′′ is defined as follows:

fλξ ′ξλ′(L |p| ) =
L∫

0

dz1

L∫
0

dz2 exp(− |p| · |z1− z2|) ϕλ(z1)ϕξ ′(z2)ϕξ (z2)ϕλ′(z1)

where

ϕλ(z) =
(

2

L

)1/2

sin

(
λπz

L

)
.

In the set of equations (2) for the ‘normal’ and ‘anomalous’ one-particle Green functions
one can observe the difference between the condensate we are studying, and this occurring in
the case when the electrons and holes are in two different infinitesimally thin layers separated
by a wide barrier material. In the case of a quantum-well structure one should take into
account the composite nature of excitons, made up with two fermions, each one with different
quantized motion along the direction perpendicular to thex-y plane. For this reason a
complicated mixing of excitations will take place, unlike the above-mentioned case of two
different infinitesimally thin layers. If one takes into accountλ = 1, 2, . . . , n1 quantized
electron states andξ = 1, 2, . . . , n2 quantized hole states, thenn1 + n2 poles for each of
propagatorsGcc,Gvv, Fcv andFvc have to be considered.

It is impossible to solve exactly the set of equations (2) for arbitraryn1 andn2, and so
we must introduce some approximation. We suppose that, when the number of electron–hole
pairs in the well is small (the low density limit), one can take the right-hand side of the gap
equations (3) in the lowest order in the density. In this case the ‘anomalous’ one-particle Green
functions in the lowest order in density can be written in the form:

Fcv(k, λ, ξ, iωm) = 1cv(k, λ, ξ)

[iωm − (Ec(k, λ)− µc)] [ iωm − (Ev(k, ξ)− µv)] +O(1 ·1) (4a)

Fvc(k, ξ, λ, iωm) = 1vc(k, ξ, λ)

[iωm − (Ec(k, λ)− µc)] [ iωm − (Ev(k, ξ)− µv)] +O(1 ·1). (4b)

Defining

ψλξ (k) ≡ 1cv(k, λ, ξ)

Ec(k, λ)− Ev(k, ξ)− µ0
exc

(5)

whereµ0
exc = µe−µv is the chemical potential of excitons (µ0

exc in this approximation does not
depend on the density), and by means of (3a) and (4a) one can obtain the following equation
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for the functionψλξ (k):[
Eg +

π2λ2

2mcL2
+
π2ξ2

2mvL2
− µ0

exc +
k2

2µ

]
ψλξ (k)

+
∑
λ′,ξ ′

∑
q

2πe2

ε∞ |k − q|fλξ
′ξλ′ (L |k − q|)

[
nF
(
Ec(q, λ

′)− µc
)

− nF
(
Ev(q, ξ

′)− µv
)]
ψλ′ξ ′(q) = 0 (6)

whereµ−1 = m−1
c + m−1

v is the exciton reduced mass andnF (x) =
[
exp(βx) + 1

]−1
is the

Fermi function. The equation (6) is the familiar Wannier equation for an exciton with zero
center-of-mass momentum in the infinitely deep well. One can solve (6) by expandingψλξ (k)

into a basisRn,m(k) = Rn,m(k, ϑ) of the radial functions of a 2D hydrogen atom system
(Shinada and Sugano 1966):

ψλξ (k) =
∑
n,m

Cnm(λ, ξ)Rn,m(k, ϑ) (7)

wheren = 0, 1, 2, . . . is the principal quantum number, and for a givenn, the angular
momentum quantum numberm = 0,±1,±2, . . . ,±n. Cnm(λ, ξ) satisfies the following
set of equations:[
Eg +

π2λ2

2mcL2
+
π2ξ2

2mvL2
− µ0

exc − E2D
n

]
Cnm(λ, ξ)

+
∑
n′,m′

∑
λ′,ξ ′

∑
k,q

2πe2

ε∞ |k − q|
(
fλξ ′ξλ′ (L |k − q|)− δλλ′δξξ ′

)
R∗n,m(k)Rn′,m′(q)

× [nF (Ec(q, λ′)− µc)− nF (Ev(q, ξ ′)− µv)]Cn′m′(λ′, ξ ′) = 0 (8)

whereE2D
n is the corresponding 2D-hydrogen atom energy. We expect to find all excitons

condensed in the lowest excitonic state and so one can assume thatλ = ξ = 1. Our next
aim is to find how the chemical potential of excitons depends upon parameterL/a0, where
a0 = ε∞µ−1e−2 is the exciton Bohr radius. To do this we assume that the temperatureT = 0 K.
Then we take into account only theλ′ = ξ ′ = 1 term on the left-hand side of (8) and use the
variational method with a function

R1,0(k) =
√
π

2

(
4β

a0

)2 [
k2 +

4β2

a2
0

]−3/2

. (9)

The parameterβ can be determined by maximizing the chemical potentialµ0
exc with respect

to β. Thus we obtain the following equation for the chemical potentialµ0
exc:

Eg + π2

(L/a0)
2E0 − µ0

exc(β)

E0
= −4β2 + 128β3

+∞∫
0

dx
f (xL/a0)(
x2 + 16β2

)3/2 (10)

whereE0 =
(
2µa2

0

)−1
is the effective exciton Rydberg and the functionf (x) is defined as

follows:

f (x) = 3x2 + 8π2

x
(
x2 + 4π2

) − 32π4 (1− exp(−x))
x2
(
x2 + 4π2

)2 .

We have numerically maximized the expression (10) for the different values of the well
thicknessL/a0 . Figure 1 shows the dimensionless chemical potentialµ0

exc/E0, measured
from the total ground-state energyEg + π2

(L/a0)
2E0 of the electron–hole pair in the well as a
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Figure 1. The calculated dimensionless chemical potential of excitonsµ0
exc/E0 (E0 is the 3D

exciton Rydberg), measured from the total ground-state energy of the electron–hole pair in the well
as a function of the dimensionless well thicknessL/a0 (a0 is the 3D exciton Born radius).

function of the dimensionless well thicknessL/a0 . The chemical potential tends to 4E0 when
L tends to zero. As can be seen, the two-dimensional behaviour of the chemical potential
disappears very quickly: forL/a0 = 1 , µ0

exc ≈ 2E0. ForL > 4a0 the trial functionR1,0

leads to the chemical potential already smaller thanE0, and so our trial wave function is well
suited for narrow well structures, but is not so good for a largeL limit.
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